Thursday, June 10, 2010

AND Gate

The AND gate performs logical multiplication, commonly known as AND function. The AND gate has two or more inputs and single output. The output of AND gate is HIGH only when all its inputs are HIGH (i.e. even if one input is LOW, Output will be LOW). If X and Y are two inputs, then output F can be represented mathematically as F = X.Y, Here dot (.) denotes the AND operation. Truth table and symbol of the AND gate is shown in the figure above. Truth Table For AND gate INPUT OUTPUT A B A AND B 0 0 0 0 1 0 1 0 0 1 1 1 AND Gate using Diodes We use the same logic levels, but the diodes are reversed and the resistor is set to...

Logic Blocks in Digital Basics

Depending upon how these "switches" and "inverters" are arranged in integrated circuits we are able to obtain "logic blocks" to perform various tasks. In figure 2 we look at some of the most basic logic blocks. In the first set of switches A, B, and C they are arranged in "series" so that for the input to reach the output all the switches must be closed. This may be considered an "AND-GATE". In the second set of switches A, B, and C they are arranged in "parallel" so that for any input to reach the output any one of the switches may be closed. This may be considered an "OR-GATE". These are considered the basic building blocks in digital...

Digital Electronics Basic Principle

Digital circuits work on the basis of a transistor being used as a switch. Consider a light switch, a transistor can be considered almost the same and in some circuits transistors are used to control large amounts of power with very little input power being used. Look at figure 1 below. Here are two crude transistor switch circuits. In the first circuit if there is no voltage applied to the base of Q1 then it is not switched "on" and accordingly the + 5V passing through the 10K load resistor from our + 5V supply appears at both the collector of the transistor and also at output 1. If we apply + 5V to the base of Q1 then because it is greater...

Wednesday, June 9, 2010

Forward and reverse bias in pn junctions

We now consider a p-n diode with an applied bias voltage, Va. A forward bias corresponds to applying a positive voltage to the anode (the p-type region) relative to the cathode (the n-type region). A reverse bias corresponds to a negative voltage applied to the cathode. Both bias modes are illustrated with Figure below. The applied voltage is proportional to the difference between the Fermi energy in the n-type and p-type quasi-neutral regions. As a negative voltage is applied, the potential across the semiconductor increases and so does the depletion layer width. As a positive voltage is applied, the potential across the semiconductor decreases...

The built-in potential

The built-in potential in a semiconductor equals the potential across the depletion region in thermal equilibrium. Since thermal equilibrium implies that the Fermi energy is constant throughout the p-n diode, the built-in potential equals the difference between the Fermi energies, EFn and EFp, divided by the electronic charge. It also equals the sum of the bulk potentials of each region, fn and fp, since the bulk potential quantifies the distance between the Fermi energy and the intrinsic energy. This yields the following expression for the built-in potential. Example 2 An abrupt silicon p-n junction consists of a p-type region containing...

Thermal equilibrium for pn junctions

To reach thermal equilibrium, electrons/holes close to the metallurgical junction diffuse across the junction into the p-type/n-type region where hardly any electrons/holes are present. This process leaves the ionized donors (acceptors) behind, creating a region around the junction, which is depleted of mobile carriers. We call this region the depletion region, extending from x = -xp to x = xn. The charge due to the ionized donors and acceptors causes an electric field, which in turn causes a drift of carriers in the opposite direction. The diffusion of carriers continues until the drift current balances the diffusion current, thereby...

Flatband diagram of pn Junctions

The principle of operation will be explained using a gedanken experiment, an experiment, which is in principle possible but not necessarily executable in practice. We imagine that one can bring both semiconductor regions together, aligning both the conduction and valence band energies of each region. This yields the so-called flatband diagram shown in Figure below Note that this does not automatically align the Fermi energies, EF,n and EF,p. Also, note that this flatband diagram is not an equilibrium diagram since both electrons and holes can lower their energy by crossing the junction. A motion of electrons and holes is therefore expected...

Structure and principle of operation of pn junction

A p-n junction consists of two semiconductor regions with opposite doping type as shown in Figure below. The region on the left is p-type with an acceptor density Na, while the region on the right is n-type with a donor density Nd. The dopants are assumed to be shallow, so that the electron (hole) density in the n-type (p-type) region is approximately equal to the donor (acceptor) density. We will assume, unless stated otherwise, that the doped regions are uniformly doped and that the transition between the two regions is abrupt. We will refer to this structure as an abrupt p-n junction. Frequently we will deal with p-n junctions in which...

Sunday, June 6, 2010

Temperature dependence of the energy bandgap

The energy bandgap of semiconductors tends to decrease as the temperature is increased. This behavior can be understood if one considers that the interatomic spacing increases when the amplitude of the atomic vibrations increases due to the increased thermal energy. This effect is quantified by the linear expansion coefficient of a material. An increased interatomic spacing decreases the average potential seen by the electrons in the material, which in turn reduces the size of the energy bandgap. A direct modulation of the interatomic distance - such as by applying compressive (tensile) stress - also causes an increase (decrease) of the bandgap. The...

Saturday, June 5, 2010

The Kronig-Penney model

The Kronig-Penney model demonstrates that a simple one-dimensional periodic potential yields energy bands as well as energy band gaps. While it is an oversimplification of the three-dimensional potential and bandstructure in an actual semiconductor crystal, it is an instructive tool to demonstrate how the band structure can be calculated for a periodic potential, and how allowed and forbidden energies are obtained when solving the corresponding Schrödinger equation. The Kronig-Penney consists of an infinite series of rectangular barriers with potential height, V0, and width, b, separated by a distance, a-b, resulting in a periodic potential...

Periodic potentials

The analysis of periodic potentials is required to find the energy levels in a semiconductor. This requires the use of periodic wave functions, called Bloch functions which are beyond the scope of this text. The result of this analysis is that the energy levels are grouped in bands, separated by energy band gaps. The behavior of electrons at the bottom of such a band is similar to that of a free electron. However, the electrons are affected by the presence of the periodic potential. The combined effect of the periodic potential is included by adjusting the value of the electron mass. This mass will be referred to as the effective mass. The effect...

Free electron model

The free electron model of metals has been used to explain the photo-electric effect . This model assumes that electrons are free to move within the metal but are confined to the metal by potential barriers as illustrated by Figure below. The minimum energy needed to extract an electron from the metal equals qFM, where FM is the workfunction. This model is frequently used when analyzing metals. However, this model does not work well for semiconductors since the effect of the periodic potential due to the atoms in the crystal has been ignored. a)The free electron model of a me...

Pages 41234 »

 
Powered by Blogger